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SUMMARY

The present algorithm is developed to calculate three-dimensional incompressible, turbulent and steady
flows in hydraulic turbomachines and installations. The code is based on a characteristic based method
for the solution of the incompressible Navier–Stokes equations, coupling the continuity and momentum
equations after the introduction of the artificial compressibility formulation. The primitive variables,
pressure and velocity components are defined as functions of their values on the characteristics. The
primitive variables on the characteristics are calculated by an upwind differencing scheme based on the
sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses
interpolation formulas of third-order accuracy. The standard k–o model is applied for the description of
turbulence effects. The time discretization is obtained by the explicit Runge–Kutta method. For faster
convergences to the steady state solution, a local time stepping and a mesh-sequencing scheme are used.
Validation of the algorithm is performed on many two- and three-dimensional laminar and turbulent
flow cases, while in the present work, the three-dimensional flow (laminar and turbulent) through a
square duct with a 90° bend is presented. Finally, the code is applied for the prediction of the relative
flow through the impeller of the Societe Hydrotechnique de France (SHF) water pump. The numerical
results are compared with the corresponding experimental measurements. Copyright © 2000 John Wiley
& Sons, Ltd.

KEY WORDS: artificial compressibility; hydraulic turbomachines; incompressible flows; Navier–Stokes
equations; Riemann solver; SHF water pump

1. INTRODUCTION

During the last decade the capabilities of computational fluid dynamics (CFD) have increased
significantly and advanced methods have penetrated from aerodynamics and aircraft design
into hydrodynamic installations and hydromachine design [1,2]. The most common CFD
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methods used in the field of hydraulic turbomachines and installations can be classified as
follows.

The classical two-dimensional potential flow codes [3,4], which were useful for approxi-
mately two-dimensional cascades, like the mid-span section of stay vanes, axial runners and
guide vane cascades. For radial and mixed flow machines, two different ways of study were
attempted very early on with the arrival of numerical algorithms, such as finite differences or
finite elements. On one hand, you had the two-dimensional and quasi-three-dimensional Euler
methods [5], which had the advantage of taking into account the rotational effects but without
calculating the three-dimensional effects. On the other hand, there was the three-dimensional
potential flow methods [6], which cover the three-dimensional effects but only as long as they
are irrotational. As the flow in a typical Francis runner is a rotational one, a three-dimensional
potential flow analysis needs a superposition technique to satisfy the Kutta condition and is
not valid for strong swirl downstream of the runner. Although both methods just tell parts of
the story, they became popular because only Poisson equation solvers were necessary.

The three-dimensional Euler methods [7–9] represent a significant progress in comparison
with the above-mentioned methods. The rotational and three-dimensional effects are calculated
by solving the momentum equations with velocity and pressure as primitive variables, but the
calculation of the viscous effects is impossible. So all losses, except of the viscous losses, can
be calculated and all inviscid secondary flows, inviscid vortices and momentum driven reverse
flow regions can be modelled by a three-dimensional Euler method.

By applying one of the Navier–Stokes codes in addition to the use of the turbulence model,
it is possible to calculate viscous losses. Although the ratio between the obtained accuracy and
the necessary investment is still rather unfavourable, many Navier–Stokes methods are applied
in the field of hydraulic turbomachines.

The development of solution methodologies [10–12] for the Navier–Stokes equations has
received considerable attention recently. The solution of incompressible flows in primitive
variables involves the need of coupling the changes in the velocity field with the changes in the
pressure field while at the same time the continuity should be satisfied. For three-dimensional
incompressible flows, most of the methods using primitive variables can be classified into two
broad categories.

The first category is the pressure Poisson method, as first introduced by Harlow and Welch
[13]. In this method, at each iteration a Poisson ‘correction’ equation [14], which is formed
from the momentum equations, is solved for the pressure to satisfy the continuity equation at
the next iteration [13,14].

The other category is that of artificial compressibility and was first introduced by Chorin
[15] for steady flow cases. In the artificial compressibility (or pseudo-compressibility) formula-
tion, a time derivative of the pressure is added to the continuity equation; therefore, a coupling
of the primitive variables (pressure and velocity) is obtained. Over the last years many authors
have used similar methods in computing steady and unsteady incompressible flows [16–18].

The artificial compressibility formulation transforms the incompressible Euler equations into
a totally hyperbolic system; therefore, numerical methods that have initially been developed for
the compressible Euler and Navier–Stokes can also be extended to incompressible flows. In
this method a pressure term instead of a time derivative of pressure is added to the continuity
equation. A combination of the penalty and pseudo-compressibility method for solving
Navier–Stokes equations has also been proposed by other authors [19].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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The present code uses a characteristic based method, which exploits the hyperbolic
properties of the incompressible inviscid equations as they are introduced by the pseudo-
compressibility formulation. In the past, Eberle [20] developed a characteristic flux averaging
scheme for an ideal gas, and the method has been reformulated for real gas problems by other
authors [21,22]. The present method defines the primitive variables (pressure and velocity
components) as functions of their corresponding values on the characteristics. Consequently,
the values on the characteristics are calculated by an upwind differencing scheme based on the
sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The Navier–Stokes
terms are discretized by an upwind-type scheme [24].

The turbulence effects are described by the k–o model of Launder and Spalding [23],
together with the standard wall functions for the boundary conditions. The discretization of
turbulence equations is obtained by an upwind-type scheme of second-order accuracy.

The time integration is obtained by a multistage (fourth-order) Runge–Kutta scheme
[24,25], and, for faster convergence to the steady state solution, a mesh-sequencing scheme is
used.

2. GOVERNING EQUATIONS AND NUMERICAL METHOD

In the present method, the governing equations are divided into two groups. The first group
includes the fluid motion (Navier–Stokes) equations and the second group includes the
equations for the turbulence modelling (k–o equations).

2.1. Fluid flow equations, artificial compressibility and characteristic flux extrapolation method

The non-dimensional, incompressible Navier–Stokes equations, by using the artificial com-
pressibility formulation and general curvilinear co-ordinates j=j(x, y, z), h=h(x, y, z) and
z=z(x, y, z), can be written as

(JU)t+Ej+Fh+Gz=
1

Re
·(Rj+Sh+Tz)+a ·P (1)

where Re is the Reynolds number and U is the unknown solution vector

U= (p/b, u, 6, w)T

The pressure p and velocity Cartesian components u, 6 and w (in the x-, y- and z-directions
respectively) are used as primitive variables. The artificial compressibility is denoted b, and its
value is chosen to ensure the fastest convergence to the steady state. By systematic numerical
experimentations, it has been found that the best convergence rate is obtained with b=1. The
vector P includes the terms due to the relative rotating system of the impeller and namely the
Coriolis and centrifugal acceleration terms

P= (0, 0, V2y+2Vw, V2z−2V6)T

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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where V is the speed of rotation of the relative system around the x-axis. The parameter a of
Equation (1) is used to define the type of flow equation. For a=1, the system of equations is
referred to as rotating flow cases, and u, 6 and w are the components of the relative velocity.
For fixed (no rotating) flow cases, the vector P is neglected, a=0 and u, 6 and w are the
components of the absolute velocity.

The inviscid flux vectors E, F and G and the viscous ones R, S and T can be written by the
superposition of the respective Cartesian inviscid (E %, F %, G %) and viscous (R %, S %, T %) fluxes as

E=J(E % ·jx+F % ·jy+G % ·jz) R=J(R % ·jx+S % ·jy+T % ·jz)
F=J(E % ·hx+F % ·hy+G % ·hz) S=J(R % ·hx+S % ·hy+T % ·hz)
G=J(E % ·zx+F % ·zy+G % ·zz) T=J(R % ·zx+S % ·zy+T % ·zz)

where the Cartesian fluxes are defined as

E %= (u, u2+p, u ·6, u ·w) R %= (0, txx, txy, txz)
F %= (6, u ·6, 62+p, 6 ·w) S %= (0, txy, tyy, tyz)
G %= (w, u ·w, 6 ·w, w2+p) T %= (0, txz, tyz, tzz)

The terms tij (i, j=x, y, z) are the viscous stresses, while J is the Jacobian of the transforma-
tion j=j(x, y, z), h=h(x, y, z) and z=z(x, y, z), from Cartesian to generalized co-ordinates

J=xj ·(yh ·zz−yz ·zh)−xh ·(yj ·zz−yz ·zj)+xj ·(yj ·zh−yh ·zj)

Except the terms of the viscous stresses, the indices x, y and z denote partial derivatives. The
viscous stresses can be written as

txx=
2
3

· m̄ ·(2 ·ux−6y−wz) tyy=
2
3

· m̄ ·(2 ·6y−ux−wz) tzz=
2
3

· m̄ ·(2 ·wz−6y−ux)

txy= m̄ ·(uy−6x) txz= m̄ ·(uz−wx) tyz= m̄ ·(wy−6z)

where m̄ is the effective viscosity defined as

m̄=m+mt

with m being the laminar viscosity of the fluid and mt being the turbulent viscosity calculated
according to the k–o model of turbulence [23].

Neglecting the viscous flux vectors R, S, T and the vector P of the rotating terms from the
Navier–Stokes equations (1), the incompressible Euler equations are obtained

(JU)t+Ej+Fh+Gz=0 (2)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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In the present work, a characteristic based method (a local Riemann solver) is presented which
exploits the hyperbolic properties of the above system of equations. The method is used for the
descretization of the convective part of the Navier–Stokes equations and is initially used for
the calculation of two-dimensional steady laminar flows [18].

The Euler equations can be discretized using a finite volume scheme. All quantities (pressure
and velocity components) are considered to be located at the centre of the corresponding
volume. In three dimensions this can be done by considering a volume (i, j, k) (Figure 1) with
cell faces (i+1

2, j, k), (i−1
2, j, k) in the x-direction; (i, j+1

2, k), (i, j−1
2, k) in the y-direction;

and (i, j, k+1
2), (i, j, k−1

2) in the z-direction respectively.
Using the finite volume concept, the Euler equations are written as

(JU)t+Ei+1/2, j,k−Ei−1/2, j,k+Fi, j+1/2,k−Fi, j−1/2,k+Gi, j,k+1/2−Gi, j,k−1/2=0 (3)

A simpler form than that of Equation (3) can be chosen to analyse the incompressible Euler
equations. This can be done by splitting the system of equations into three one-dimensional
equations

1/3 ·(JU)t+Ej=0 (4a)

1/3 ·(JU)t+Fh=0 (4b)

1/3 ·(JU)t+Gz=0 (4c)

In the following paragraphs, the analysis of the method for Equation (4a) is presented. This
equation can be used for the development of the local Riemann solution in the x-direction.

Figure 1. A finite volume (i, j, k) with its volume faces.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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Similarly, Equations (4b) and (4c) can be analysed, resulting in a local Riemann solution in the
y- and z-directions respectively. The term 1/3 of the time derivative will be included in the
calculation of the local time step so it is neglected in the following equations. The non-conser-
vative form of Equation (4a) is

1
b

pt+ujjx+6jjy+wjjz=0 (5a)

ut+uj(ujx+6jy+wjz)+u(ujjx+6jjy+wjjz)+jxpj=0 (5b)

6t+6j(ujx+6jy+wjz)+6(ujjx+6jjy+wjjz)+jypj=0 (5c)

wt+wj(ujx+6jy+wjz)+w(ujjx+6jjy+wjjz)+jzpj=0 (5d)

In the previous system of equations, the space derivatives are usually calculated by the initial
data at the time level n. In order to perform time integration of Equations (4a)–(4c), the
updated values of the vector U= (p/b, u, 6, w)T at the time level (n+1) can be defined by a
linear Taylor series expansion around the known previous time level (Figure 2). The vector U
can be defined as function of the Uj values, which are inside the limits of a stable integration
[26]

U=Uj+DjUj+UtDt, Ut=
U−Uj

Dt
−Uj

Dj

Dt
(6)

Figure 2. Schematic presentation of the characteristic method.
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where the interval Dj=j % ·Dt is defined by introducing a wave speed j %. The line with the
slope 1/j % is the characteristic.

It is clear that the term j % is not a real physical speed, as j is dimensionless, and therefore
j % is an inverse time. Following a dimensional analysis, in order to enter a physical wave speed
with a proper dimension, a wave speed l is introduced via

j %=l
jx
2 +jy

2+j z
2

After the introduction of the wave speed l, Equation (6) yields

Ut=
U−Uj

Dt
−Ujl
jx

2 +jy
2+j z

2 (7)

By substitution of Equation (7) into Equations (5a)–(5d), the following equations are
obtained:

1
b

1

Dt
jx
2 +jx

2 +jx
2

(p−pj)−
1
b

pjl+ujx̄+6jȳ+wjz̄=0 (8a)

1

Dt
jx
2 +jx

2 +jx
2

(u−uj)+uj(l−l0)+u(ujx̄+6jȳ+wjz̄)+pjx̄=0 (8b)

1

Dt
jx
2 +jx

2 +jx
2

(6−6j)+6j(l−l0)+6(ujx̄+6jȳ+wjz̄)+pjȳ=0 (8c)

1

Dt
jx
2 +jx

2 +jx
2

(w−wj)+wj(l−l0)+w(ujx̄+6jȳ+wjz̄)+pjz̄=0 (8d)

where

l0=u · x̄+6 · ȳ+w · z̄ and ā=
ja


jx
2 +jy

2+j z
2

, a=x, y, z

The spatial derivatives of ux, wx and px can be calculated from the above three equations. The
method of Riemann [26] is used for the calculation of the above equations and a similar
consideration has also been done by Eberle [25] for the compressible Euler equations.
According to this consideration, at each time step the system of equations is zero so it can be
multiplied by an arbitrary coefficient. After the summation of the three equations, the resulting
equation will also be equal to zero

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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1

Dt
jx
2 +jx

2 +jx
2

�1
b

a(p−pj)+b(u−uj)+c(6−6j)+d(w−wj)
n

+pj

�
−a

l

b
+bx̄+cȳ+dz̄

n
+uj [ax̄+b(l0−l+ux̄)+c6x̄+dwx̄ ]

+6j [aȳ+c(l0−l+6ȳ)+buȳ+dwȳ ]+wj [az̄+d(l0−l+wz̄)+buz̄+c6z̄ ]=0
(9)

where a, b, c and d are the coefficients for the multiplication of Equations (8a)–(8d)
respectively. After the definition of the coefficients of the partial space derivatives are set to
zero, the following equation system is obtained:

1
b

a(p−pj)+b(u−uj)+c(6−6j)+d(w−wj)=0 (10a)

−a
l

b
+bx̄+cȳ+dz̄=0 (10b)

ax̄+b(l0−l+ux̄)+c6x̄+dwx̄=0 (10c)

aȳ+c(l0−l+6ȳ)+buȳ+dwȳ=0 (10d)

az̄+d(l0−l+wz̄)+buz̄+c6z̄=0 (10e)

The coefficients a, b, c and d can be determined by solving the system of Equations
(10b)–(10e). A non-trivial solution is obtained for each of the eigenvalues of the above system

l0=u · x̄+6 · ȳ+w ·w̄ (11a)

l1=l0+
l0
2+b (11b)

l2=l0−
l0
2+b (11c)

For the eigenvalue l=l0, Equations (11a)–(11c) give

a=
bx̄+cȳ+dz̄

l0

b

By substitution of the last equation into Equation (10a), the following equation arises:

b{x̄(p−p0)+ (u−u0)l0}+c{ȳ(p−p0)+ (6−60)l0}+d{z̄(p−p0)+ (w−w0)l0}=0
(12)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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The subscript ‘0’ denotes that the Equation (12) corresponds to the zeroth eigenvalue l=l0.
The last equation is satisfied regardless of the values of the coefficients b, c and d. Therefore,
the terms into the brackets must be zero, and thus the following equations are obtained:

x̄(w−w0)− z̄(u−u0)=0 (13a)

x̄(6−60)− ȳ(u−u0)=0 (13b)

Similarly with the above equations, for the zeroth eigenvalue l0, the following equations are
obtained for the eigenvalues l1 and l2:

(p−p1)+l1[x̄(u−u1)+ ȳ(6−61)+ z̄(w−w1)]=0 (14a)

(p−p2)+l2[x̄(u−u2)+ ȳ(6−62)+ z̄(w−w2)]=0 (14b)

The values pj, uj, 6j and wj, with j=0, 1, 2, are the values of the pressure and velocity
components (primitive variables) on the three characteristics and Equations (13) and (14) are
the characteristic equations or Riemann invariants. From the solution of the previous
equations, the primitive variables p, u, 6 and w are given as functions of their characteristic
values

u= x̄ ·R1+ z̄ ·(z̄ ·u0− x̄ ·w0)+ ȳ ·(ȳ ·u0− x̄ ·60) (15a)

6= ȳ ·R1+ x̄ ·(x̄ ·60− ȳ ·u0)+ z̄ ·(z̄ ·60− ȳ ·w0) (15b)

w= z̄ ·R1+ x̄ ·(x̄ ·w0− z̄ ·u0)+ ȳ ·(ȳ ·w0− z̄ ·60) (15c)

p=
l1 ·k2−l2 ·k1


l0
2+b

(15d)

where the coefficients k1, k2 and R1 are defined as

k1=p1+l1 ·(x̄ ·u1+ ȳ ·61+ z̄ ·w1)

k2=p2+l2 ·(x̄ ·u2+ ȳ ·62+ z̄ ·w2)

R1=
0.5


l0
2+b

[(p1−p2)+ (l1u1−l2u2)x̄+ (l161−l262)ȳ+ (l1w1−l2w2)z̄ ]

The values of the pressure and velocity components obtained from Equations (15a)–(15d) are
used for the calculation of the inviscid flux, E, on the cell face of the computational volume.

The characteristics values pj, uj and wj, with j=0, 1, 2, are defined by upwind differencing
from the left or the right side of the cell face according to sign of the eigenvalues

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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Ui+1/2
j =

Á
Ã
Ã
Ã
Ä

pj

uj

6j
wj

Â
Ã
Ã
Ã
Å i+1/2

=
1
2

· [(1+sign lj) ·U− + (1−sign lj) ·U+]

where Ui+1/2
j is a vector containing the characteristic values for each j=0, 1, 2 and U−, U+

are the vectors of the characteristics variables from the left and the right side of the control
volume respectively. A third-order interpolation formula [21] is employed to increase the
accuracy of the scheme

(Ui+1/2)− =
5 ·Ui−Ui−1+2 ·Ui+1

6
, (Ui+1/2)+ =

5 ·Ui+1−Ui+2+2 ·Ui

6

These interpolation formulas have also been used in the past [19] for the solution of the
compressible Euler and Navier–Stokes equations providing satisfactory accuracy and conver-
gence properties.

In this section, the analysis concerns the inviscid flux E. Similar analysis is used for the
solution of vectors F and G in the y- and z-directions respectively.

The solution of the Navier–Stokes equations requires also the discretization of the viscous
terms. For this purpose, an ‘upwind’ type scheme for the cross-derivatives of the viscous fluxes
and central discretization for the second-order derivatives was adopted [22]. Similar schemes
have been used successfully in the past for subsonic and supersonic flows.

2.2. Turbulence equations k–o and the law of the wall

For the modelization of turbulence effects, the standard k–o turbulence model [23] is applied.
Close to the solid walls viscous effects become considerable and such a model does not lead to
acceptable predictions. In the current numerical procedure, the wall functions [23,28] method
is applied for the volumes adjacent to solid walls.

The turbulent viscosity mt is calculated according to the k–o turbulence model

mt=Re ·Cd ·
k2

o

where k is the turbulence kinetic energy, o is the dissipation rate of the turbulence kinetic
energy and Cd is a scalar constant for isotropic turbulence. The k–o turbulence model of
Launder and Spalding [17] is chosen because of its capability to describe accurately and
efficiently a variety of flows [23,25]. The momentum equations for k and o can be written

(JUko)t+Ekoj+Fkoh+Gkoz=
1

Re
·(Rkoj+Skoh+Tkoz+Pko)

where

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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Uko=
�k

o

�
Pko=J ·

� U−Re ·o
(t1 ·U−Re ·t2 ·o) ·o/k

�
Eko=J ·

�(u ·jx+6 ·jy+w ·jz) ·k
(u ·jx+6 ·jy+w ·jz) ·o

�
Rko=J ·

�mt ·(d1 ·kj+d4 ·kh+d5 ·kz)/sk

mt ·(d1 ·oj+d4 ·oh+d5 ·oz)/so

�
Fko=J ·

�(u ·hx+6 ·hy+w ·hz) ·k
(u ·hx+6 ·hy+w ·hz) ·o

�
Sko=J ·

�mt ·(d4 ·kj+d2 ·kh+d6 ·kz)/sk

mt ·(d4 ·oj+d2 ·oh+d6 ·oz)/so

�
Gko=J ·

�(u ·zx+6 ·zy+w ·zz) ·k
(u ·zx+6 ·zy+w ·zz) ·o

�
Tko=J ·

�mt ·(d5 ·kj+d6 ·kh+d3 ·kz)/sk

mt ·(d5 ·oj+d6 ·oh+d3 ·oz)/so

�
and the coefficients d1, d2, d3, d4, d5 and d6 are defined as

d1=jx
2 +jy

2+j z
2, d2=hx

2 +hy
2+h z

2, d3=zx
2 +zy

2+z z
2,

d4=jxhx+jyhy+jzhz, d5=jxzx+jyzy+jzzz, d6=zxhx+zyhy+zzhz

The production rate of the turbulent kinetic energy is defined as

U=2 ·mt ·(ux
2 +6y

2+wz
2)+mt · [(uy+6x)2+ (uz+wx)2+ (6z+wy)2]

The turbulence model has five constants. The following values are commonly used:

Cd=0.09, t1=1.44, t2=1.92, sk=0.9, so=1.22

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30
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In the present work, the turbulence equations k–o are numerically decoupled from the
Navier–Stokes equations. Specifically, at each iteration the k–o equations are updated using
the mean flow quantities just computed. The fluxes Eko, Fko and Gko are discretized by a second
upwind differencing method [24]. The variables k and o are defined from Equation (2), on the
left or the right side of the cell face according to the sign of the eigenvalue l0. A similar scheme
is adopted for the discretization of the viscous fluxes R, S and T of the fluxes Rko, Sko and Tko.

The application of several modified turbulence models [27], in order to take into account the
rotational effects, has not given numerical results essentially different than those obtained from
the standard k–o turbulence model.

The above k–o model is only valid in regions with homogeneous turbulence. Near the solid
walls, viscous effects become dominant and such a model does not lead to acceptable
predictions. For the present calculations it is used for treating the adjacent wall regions.
According to the procedure of wall functions, the region close to the solid wall is divided into
two sub-layers. A laminar sub-layer, where purely viscous effects are dominant, and a
turbulent sub-layer. The profile of the velocity UP parallel to the wall at the first grid node P
from the wall is

�UP �=ucyP
+ for laminar sub-layer yP

+B11.63

�UP �=uc

k
ln(EyP

+) for turbulent sub-layer yP
+\11.63

where yP
+ =Re(ryPuc/m) is the dimensionless distance of node P from the wall and uc =


tw/Rer is the friction velocity. The other variables are defined as tw is the wall shear stress,
yP is the normal distance of the node P from the wall, E=9.79 is a roughness parameter and
k=0.419 is the Von Karman constant. From the previous equations, the shear stress tw is
calculated and assuming that the shear stress is constant near the wall, the kinetic energy and
the dissipation rate of the turbulence energy at the node are equal to

kP=
uc


cd

, oP=
uc3

kyP

,

2.3. Boundary conditions

For the numerical solution of the governing differential equations, boundary conditions must
be defined on the boundaries of the computational domain. Generally, the following types of
boundaries can be treated: inlet, outlet, symmetry plane and solid walls.

2.3.1. Inlet. On the inlet boundary the velocity profiles are specified and the pressure second
derivative is set equal to zero. The kinetic energy and the dissipation of turbulence energy are
estimated by the following empirical relations:

k=0.03 · ū2, o=
Cd ·k1.5

0.005 ·Din

where Din is the reference inlet diameter and ū is the average inlet velocity.
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2.3.2. Outlet. It is supposed that the flow is extended over a sufficiently long domain so that
it can be considered as fully developed at the exit section. Thus, for any variable, the second
derivative is set equal to zero, with an exception made for the pressure, which is taken equal
to its reference value.

2.3.3. Symmetry axis. The first derivatives of all variables are set equal to zero, except for the
vertical component of the velocity, which is instead set equal to zero.

2.3.4. Solid walls. On the solid surfaces, the velocity components and the pressure normal
derivative are set equal to zero. For the turbulent variables, k and o, the standard wall
functions are applied.

2.4. Time integration of the incompressible and turbulence equations

For the time integration of the Navier–Stokes and k–o equations, an explicit fourth-order
Runge–Kutta time stepping method was employed. The Runge–Kutta time stepping method
[24,25] can be written as

U1=Un+0.25 ·Dt ·Z( (Un)

U2=Un+0.33 ·Dt ·Z( (U1)

U3=Un+0.50 ·Dt ·Z( (U2)

Un+1=Un+1.0 ·Dt ·Z( (U3)

where

Z( (U)= −Ej−Fh−Gz+Rj+Sh+Tz+P

For faster convergence to the steady state solution, a local time stepping technique is used

Dt=
CFL

max(�l0�, �l1�, �l2�)i, j,k

where CFL is the Courant–Friedrich–Lewy number. The values of CFL for the current
calculations are taken to be between 0.8 and 1.2.

2.5. Solution of the discretized equations

The steps of the solution procedure can be outlined as follows:

(a) Guess all the necessary initial variables.
(b) Compute on the solid walls the slip parallel velocity and boundary variables k–o (wall

functions).
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(c) Solve the incompressible equations.
(d) Solve the turbulence equations using the mean flow quantities just computed.
(e) Update the turbulence viscosity.
(f) Update the variables, return to step (b) and repeat the process until convergence.

It should be mentioned that a mesh-sequencing scheme [29] is used to reduce the computing
time. The computer time for the convergence to the steady state solution is dependent on the
initial estimation of the primitive variables. The algorithm solves the flow problem using two
coarse grids and succeeds in a better initial estimation for the final calculation at the formal
fine grid. Each coarse grid is constructed by neglecting every second node of the next finer
grid, in each direction (Figure 3; eight volumes 1–8 of the fine grid are merged into one
volume of the coarse grid). Particularly, for a IE×JE×KE grid, the two coarse grids are the
following:

IE+3
4

×
JE+3

4
×

KE+3
4

2nd stage

[
IE+1

2
×

JE+1
2

×
KE+1

2

1st stage

[ IE×JE×KE

It is clear that the numbers (IE+3)/4, (JE+3)/4 and (KE+3)/4 must be integers. The transfer
of the primitive variables from the coarse grid to the fine one is obtained by the following
equations (Figure 3):

U1= (9UA%+3UB%+3UD%+UC%)/16, U2= (9UB%+3UA%+3UC%+UD%)/16

U3= (9UC%+3UB%+3UD%+UA%)/16, U4= (9UD%+3UA%+3UC%+UB%)/16

Figure 3. Presentation of the mesh-sequencing scheme.
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U5= (9UE%+3UF%+3UH%+UG%)/16, U6= (9UF%+3UE%+3UG%+UH%)/16

U7= (9UG%+3UF%+3UH%+UE%)/16, U8= (9UH%+3UE%+3UG%+UF%)/16

where

UA%= (3UA+UE)/4, UB%= (3UB+UF)/4, UC%= (3UC+UG)/4, UD%= (3UD+UH)/4

UE%= (3UE+UA)/4, UF%= (3UF+UB)/4, UG%= (3UG+UC)/4, UH%= (3UH+UD)/4

A reduction of 50% of the computing time was reached in comparison with the computing time
without the application of the mesh-sequencing scheme.

3. NUMERICAL RESULTS AND VALIDATION

3.1. Laminar and turbulent flow through a square duct a with 90° bend (three-dimensional
flow)

The present numerical method is applied to the case of the steady flow through a square
duct with a 90° bend. The case was studied experimentally by Taylor et al. [30] and the
detailed geometry of the bend is given in Figure 4. Two different grids, 81×13×21 and
101×21×41 (in the streamwise, normal and radial directions respectively) were used and
formed in one half of the symmetric duct (the flow is symmetric) between the symmetry
plane [AFGD ] z/z1/2=0 and the plane of the right side [BEHC ] of the duct z/z1/2=1.0.
The grid 81×17×33 is shown in Figure 5. For the acceleration of the convergence, the
grid nodes are finer near the solid walls. Two cases are examined. A laminar flow with
Re=790 and a turbulent flow with Re=40000. The Reynolds number (Re=Uin ·Lin/n) is
defined using the average inlet velocity (Uin) as the unit velocity and the side of the square
cross-section as the unit length (Lin). The boundary conditions are given in Table I. The
inlet section is located 7.5 length units upstream of the bend and the outlet section is 15
units downstream of the bend.

For the laminar flow case Re=790, the obtained numerical velocity results are compared
with the experimental measurements of Taylor et al. [30] (Figure 6). The streamwise–velocity
profiles are given at two sections upstream of the curved section, x= −0.5 and x= −0.25, at
three positions in the curved section corresponding to u=30°, 60° and 77.5° and at three
sections upstream of the bend, namely at x=0.25, x=0.4 and at x=2.5. At each section
along the duct, the velocity values are plotted for five radial locations between the inner (r=ri)
and the outer (r=ro) curved wall. On the same Figure 6, velocity profiles corresponding to two
different grids: 81×13×21 and 101×21×41 nodes are also given in order to examine the
grid-independence of the solution.

The obtained results are compared in Figure 7, with the corresponding results obtained by
a finite difference based numerical method from Sotiropoulos et al. [31]. The application of the
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Figure 4. Geometry of the square duct with 90° bend.

last method is carried out on a numerical grid with 69×21×41 nodes. The measured and
current calculated velocity profiles along z-lines at the sections x= −0.25, downstream of
the bend, at u=30°, 77.5° in the curved duct, and at x=0.25 and x=2.5 upstream of the
bend are given in Figure 8.

At the other sections of the duct the current calculations are in good agreement with the
experimental data and with the other numerical results. In the Figures 6–8, it is clear that
the obtained results are independent from the density of the computational grid.

In the second case of the turbulent flow, where the Reynolds number is equal to Re=
40000, the numerical solution is carried out on the grid with 81×13×21 nodes. In Figure
9, the current numerical streamwise–velocity profiles are compared with the experimental
measure ments of Taylor et al. [30]. The velocity profiles are given at a section upstream of
the bend, x= −0.25, at three sections in the curved part of the duct corresponding to
u=30°, 60° and 77.5° and at two sections upstream of the bend, at x=0.25, x=0.4 and
x=2.5. The comparison is good, although some discrepancies exist near the upper solid
wall (r=ri) on the curved section of the duct. The main reason for this is that the grid
density is not fine enough to predict exactly the sharp variation of the flow in this section
of the duct.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30



CALCULATION OF FLOWS IN HYDRAULIC TURBOMACHINES 17

Figure 5. Numerical grid 81×13×21 of square duct with 90° bend.

Table I. Boundary conditions.

Plane

Solid wall conditions[CDGH]
[BCHE] Solid wall conditions
[ABEF] Solid wall conditions
[ADGF] Symmetry wall conditions

Inlet boundary conditions with uniform velocity profile[ABCD]
Outlet boundary conditions with constant reference static pressure[EFGH]
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Figure 6. Comparison between present and experimental streamwise–velocity profiles for Re=790.

Finally, in Figures 10 and 11 the convergence histories for both cases (Re=790 and 40000)
for single grid calculation and for mesh-sequencing technique are shown. By the application of
the mesh-sequencing scheme, the run-time is reduced by about 50% in comparison with the
single grid calculation.

3.2. Flow through the SHF pump impeller

The SHF impeller is a radial centrifugal impeller with seven blades. The impeller was designed
within the Working Group of the Societe Hydrotechnique de France (SHF) in order to study
the inlet and outlet recirculations in centrifugal pumps at partial flow rates. Similar impellers
have been tested in air and in water in different American and European laboratories and
institutes with various test conditions. Many universities and companies have tested their
three-dimensional numerical codes (Euler, boundary layer, Navier–Stokes codes) using the
three-dimensional flow case of the SHF impeller, and comparisons have been made with the
experimental results for different flow rates.

The impeller geometry and the main characteristics are given in Figure 12. The nominal flow
rate of water in the impeller is 0.1118 m3 s−1 and it corresponds to a mean axial velocity of
3.04 m s−1. The nominal head is 31 mWG and the rotational speed is 1200 rpm, which
corresponds to a peripheral velocity of 25.13 m s−1. The Reynolds number (Re=V ·D/n) is
equal to Re=650000, where V is the mean inlet axial velocity (3.04 m s−1) and D is the inlet
diameter of the impeller (220 mm).

For simplicity, the impeller is regarded as a free rotor, in which the flow behaviour is
independent of the diffuser and the volute. Especially for flow rates different than the nominal
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Figure 7. Comparison between numerical and experimental streamwise–velocity profiles for Re=790.

one, this assumption is not accurate as flow interaction effects appear between the impeller and
the spiral casing.

In the present analysis, computations are carried out for two flow rates: nominal (Q=Qn)
and partial flow rate (Q=60% Qn).

In this paper, two sets of experimental measurements are referred: (a) LDV discharge data
[32] performed at Institut National des Sciences Appliquées (INSA) in Lyon on a water model
for five flow rates, and (b) static pressure measurements [33] performed at École Nationale
Supériere d’Arts et Metiers (ENSAM) in Lille on an air model for different flow rates. Apart
from the experimental measurements, the current results are also compared with numerical
results obtained by another finite volume Navier–Stokes code, which was developed by Sulzer
Company [34].

Assuming periodic flow conditions through the impeller, the computational domain is
restricted to one impeller channel. The blades are part of the boundary. The channel is
extended upstream with part of the inlet pipe and downstream by an unvaned diffuser. Inflow
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Figure 8. Measured and calculated radial velocity profiles along z-lines for Re=790.

axial velocity at the inlet corresponds to the appropriate flow rate. As the considered domain
is rotating with angular velocity v, the inflow relative peripheral velocity is equal to −vr. At
the outflow, the pressure is taken equal to its reference value and the second derivative of the
relative velocity is set equal to zero. On the blades, the hub and the shroud, the velocity
components are equal zero and the standard wall functions are applied.

The reference grid (Figure 13) has 27 nodes from hub to shroud (K-direction) and 27 nodes
from the suction side of one blade to the pressure side of the next blade (J-direction). From
the inlet to the outlet (I-direction), 79 nodes are located. The leading edge corresponds to
I=13 and the trailing edge to i=67. The grid consists of 57571 nodes, which are not
uniformly distributed as their density is more important near the solid walls. The outlet
diameter of the impeller is 400 mm and the outlet diameter of the computational domain is
taken equal to 475 mm.

Computations have been performed on a Silicon Graphics Power Challenge XL (MIPS
270 spesfp 92) using one processor. For a single grid calculation (without using the
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Figure 9. Comparison between present and experimental streamwise–velocity profiles for Re=40000.

mesh-sequencing scheme), CPU time was 383 min for Q/Qn=100% flow case and 526 min for
Q/Qn=60% flow case.

The existing static pressure measurements are distributed along both sides of the blade, the
hub and the shroud in the impeller region. Current computations of the static pressure at the
hub and at the shroud, along the centreline, are given in Figures 14 and 15 for the case of the
nominal flow rate (Q=Qn) and for the case of the part flow rate (Q/Qn=60%) respectively.
In Figure 16, the distribution of the pressure, along both sides, is given for the two flow cases.
In all figures, the current results are well correlated to the experimental measurements and the
Sulzer Company data. The comparison shows that computed pressures correspond quite well
to measurements, except near the trailing edge and near the leading edge at the shroud side,
due to losses.

Pitch-averaged relative velocities are plotted in Figures 17 and 18 for the nominal flow rate,
where the trailing edge radius is given by r2=200 mm. Radial and tangential relative velocity
components are given as a function of the axial position, from the hub to the shroud, for two
radial positions: in the impeller (r/r2=0.818) and in the diffuser (r/r2=1.018). The velocities
of the calculations are also mass-averaged according to the following formulas:

c̄rad=

&&
c rad

2 dA&&
crad dA

[m s−1]; c̄tang=

&&
cradctang dA&&

crad dA
[m s−1],
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Figure 10. Convergence history for the single-grid (81×13×21) calculation and mesh-sequencing
(21×4×6�41×7×11�81×13×21) calculation, for Re=400.

It shows calculations obtained by the current method and the Sulzer Company method, as well
as flow measurements performed at INSA. In both radial positions, the average radial velocity
as computed by the present method agrees quite well with measurements, although the slightly
higher radial velocity component near the shroud is not predicted by the numerical results.
Computed pitch-averaged tangential velocity components show a reasonable agreement with
experiments.

Figures 19 and 20 show radial and tangential relative velocity profiles near the impeller exit
(r/r2=0.978), for the nominal flow rate (Q/Qn=100%) and for the part flow rate (Q/Qn=
60%) respectively, and for the located points at the mid-channel (b/bmax=0.5 to 0.52). The
radial velocity component predicted by the current method agrees well with experimental data,
both for nominal and partial flow rates. However, at the nominal flow rate, large deviations
still occur near the suction side (SS) of the blade. The numerical tangential velocity profiles
show good agreement with experimental measurements both for nominal and partial flow rate.

Finally Figure 21 shows the hub–shroud distribution of the streamwise relative velocity at
mid-pitch for the nominal and the partial flow rates. For the case of the partial flow rate, the
generation of a small recirculation zone is observed upstream of the leading edge and near the
shroud side.
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Figure 11. Convergence history for the single-grid (81×13×21) calculation and mesh-sequencing
(21×4×6�41×7×11�81×13×21) calculation, for Re=40000.

4. CONCLUSIONS

The objective of the present work was to develop a numerical method for the solution of the
three-dimensional steady turbulent flows in hydraulic turbomachines and installations. The
study solved the fluid flow equations via a new characteristic based method. The continuity
and momentum equations were coupled by the introduction of the artificial compressibility
formulation and a hyperbolic set of equations for the inviscid incompressible case was derived.
The standard k–o equations were used for modelling the turbulence and wall effects in
turbulent flows were taken into account by the use of the law of the wall. For the time
integration, an explicit Runge–Kutta scheme was used.

The validation of the algorithm is performed on the numerical prediction of the three-
dimensional flow (laminar and turbulent) through a square duct with a 90° bend and the flow
through the SHF radial water pump impeller. The computations show a qualitative agreement
with experimental measurements, and the method provides an enough high accuracy.

Several improvements to the current code could be carried out in the near future as the
application of a local multigrid scheme or the application of an implicit formulation of the
characteristic based method in order to accelerate the convergence. Finally, the method could
be extended to the unsteady three-dimensional flows.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 1–30



P. A. GOVATSOS AND D. E. PAPANTONIS24

Figure 12. Geometry and main characteristics of the SHF pump impeller.

Figure 13. Numerical grid 79×27×27 of the SHF impeller blade.
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Figure 14. Correlation of measured and computed values of static pressure at centreline of hub and
shroud, for nominal flow rate (Q/Qn=100%).

Figure 15. Correlation of measured and computed values of static pressure at centreline of hub and
shroud for partial flow rate (Q/Qn=60%).
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Figure 16. Correlation of measured and computed values of static pressure along the blade for nominal
(Q/Qn=100%) and partial flow rate (Q/Qn=60%).

Figure 17. Averaged velocity components at r/r2=0.818, for nominal flow rate (Q/Qn=100%).
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Figure 18. Averaged velocity components at r/r2=1.018, for nominal flow rate (Q/Qn=100%).

Figure 19. Velocity profiles at r/r2=0.978, for nominal flow rate (Q/Qn=100%). The left side is the
suction side of the blade, the right side is the pressure side.
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Figure 20. Velocity profiles at r/r2=0.978, for partial flow rate (Q/Qn=60%). Orientation of suction
side and pressure side as in Figure 19.

Figure 21. Hub–shroud distribution of the streamwise–velocity at mid-pitch for nominal and partial
flow rate.
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